

ФОНД ГАРАНТУВАННЯ ВКЛАДІВ

Summary report

Study on pricing factors and price prediction modelling for sales of the assets of bankrupted banks based on historical sales conducted by the DGF on Prozorro.sale in Ukraine

Project Sponsors

Content

Project Overview	4-6
Creation of a Consolidated Dataset	7-12
Data Analysis and Model Building	13-23

Project Overview

Project Overview

The cornerstone of this project is to conduct a detailed study of historical sales transactions done by the DGF during the period from 2017 to February 2022 and prepare a fair price methodology to be used during the resolution of insolvent bank for estimation of the future incoming cash flows from divesting assets in liquidation procedure.

The work, performed by one of the Big 4 companies, is based on **best practices and methods adapted to the Ukrainian market**. The first step of the project is **creation of a consolidated dataset** of asset sales conducted by DGF. On the next steps collected data is categorized and analyzed to create a basis for further project stages. As a result of this study, predictive models for calculation of **assets fair value** are developed to be used by DGF during performance of its function.

Project Overview

Data collection, consolidation, and analysis

- Prepare (clean and consolidate)

 a large pool of the DGF's and
 Prozorro.Sale's data related to asset
 sales conducted by the DGF.
 Perform data segmentation based
 on the type of assets sold.
- Identify variables that impact the final sale price, successful auction timing, or factors that may cause unsuccessful auctions.
- Identify sale price trends, including macrotrends, for the period, for different asset classes, for lot types (individual/bulk).
- Perform a sensitivity analysis of the sale price regarding different parameters.

Development of the models

Develop statistical models for each type of assets (if possible) based on available historical data and data analysis results. The main assets are:

- loans
- vehicles
- fixed assets
- real estate
- securities

Fair value methodology

- Prepare a methodology for estimating future cash flows from sales when divesting assets.
- Provide a list of available valuation methods with indication of their applicability for a certain asset class (i.e., loans, commercial real estate, land, etc.).
- Incorporate relevant findings of the asset sale study conducted at the first stage of the project.

Main project components

Creation of a Consolidated Dataset

Creation of a Consolidated Dataset

8

Creation of a Consolidated Dataset – Defined Asset Types

Creation of a Consolidated Dataset - Parsing

ПАСПОРТ АКТИВУ Транспортні засоби та спеціалізована техніка]					
Назва банку	Назва банку			знесбанк"	Criginal PAP				
1. Характеристика майна									
1.1. Назва активу: транспорт	ні засоби чи спецтехніка		Транспорт	ні засоби					
1.2. Вид транспортного засоб	бу (легковий автомобіль, вантажний								
автомобіль, автобус, літак, су	удно, потяг, вагон, причіп, платформа,								
трейлер, інше) чи вид спецте	ехніки (бульдозер, трактор, комбайн,						Details of assets were extracted		
автокран, погрузчик, ескават	ор, тощо)	Автомобіль д.н. ВВ0011ВВ							
1.3. Марка та модель транспо	ортного засобу/спецтехніки		🖌 Toyota Ca	amry 2.0			using the following technologies:		
1.4. Рік випуску			200	06			Robotic Process Automation		
1.5. Об'єм двигуна			345	56					
1.6. Пробіг (км) чи наработка	а (моточаси)	332396				(RPA)			
1.7. Колір		жовтий				The parsing technique			
1.8. Номер кузова/шассі/VIN	1.8. Номер кузова/шассі/VIN-код		4T1BK46K47U506139				implemented in Python		
1.9. Фізична наявність (наявн	ний, розшук, арешт тощо)		наяв	ний			implemented in rython		
1.10. Фізичний стан (відмінн	ий, добрий, задовільний, незадовільний)		задовіл	льний	Cons	olidated table			
опис пошкоджень			0			Π	Information is ovtracted from		
1.11. Місце реєстрації за свід	оцтвом про реєстрацію		Луган	нськ		V			
Вид транспортного засобу	Марка та модель транепортного зас	Рік випуску	Об'єм двигуна	Пробіг (км) чи наработка	Колір	Номер кузова/шассі/VIN-код	PAPs using developed identifiers		
Автомобіль АА6367ВЕ,	ГАЗ 2217	2005	2300	236720	білий	інформація відсутня	and is placed in the corresponding		
Автомобіль д.н. АА2647ІС	Volkswagen trangporter інкасаційний	2008	2461	352307	сірий	WV1ZZZ7HZ8H159460	column of the tables, as shown in		
Автомобіль д.н. ВВОО11ВВ	Toyota Camry	2006	3456	332396	жовтий	4T1BK46K47U506139	the illustration		
Автомобільд.н. АА7393КР	Volkswagen T4 інкасаційний	2003	2461	658820	сірий	WV1ZZZ70Z3H139917			
Легковий Сєдан	TOYOTA CAMRY	2007	2362	2 173000	сірий	JTNBE40K403091397			
Легковий Седан-В	DAEWOO LANOS	2012	1498	3 162685	сірий	Y6DTF69Y0D0318358			
Легковий Седан-В	DAEWOO LANOS	2012	1498	3 194387	сірий	Y6DTF69Y0C0307835			
Легковий-В Седан	DAEWOO LANOS TF69Y	2005	1498	308598	сірий	SUPTF69YD5W239550			
Легковий Седан-В	SKODA SUPERB ELEGANCE	2007	1781	147001	чорний	TMBBL23U08B300065			

The above example demonstrates the extraction of the model of the vehicle and the VIN for PAP template of vehicles.

Creation of a Consolidated Dataset – Asset Types Distribution

The total number of conducted auctions for the period from 2017 to 2022 was **221,952**, for which **88%** of Public Asset Passports were obtained from public available sources. The majority of data relates to Loans and Real Estate, the rest of asset types account for less than 10% of the overall number of auctions.

Asset Types Distribution

Data Analysis and Model Building

Price Prediction Model – Data used for modeling

Since the templates of the public asset passports and the datasets they contain changed during the analysis period and were not identical in content, the datasets underwent stages of cleaning and validation. Although such data can and should be stored for future reference, it is not suitable for the purposes of this study and was excluded from the dataset used for sales analysis and model.

Observations that contain complete and reliable information about assets were used for further analysis and price prediction modeling. The total number of observations (within all asset classes) in the "Sold assets with cleaned data" sample is **5,827**, which is **52%** of the total number of assets sold.

Price Prediction Model¹ – Vehicles

	Factor	K _i
1	Engine Volume	0.167795
2	Physical Availability – Seized/Traced	-0.14947
3	Age (square root)	-0.55096
4.a	Segment – Budget	-0.21675
4.b	Segment – Middle	-0.0855
4.c	Segment – Upper middle	-0.00975
4.e	Segment – Luxury	0.311997
5.a	Brand Region – USA	0.025173
5.b	Brand Region – Other countries	-0.59112
5.c	Brand Region – Europe	0.250328
5.e	Brand region – Asia (South Korea and Japan)	0.315615
6	Mileage	-0.04891
7	Physical condition – Unsatisfactory	-0.28722
8	Type of transport – Cars	0.121301
Inte	cent (I)	9 919782

$$P = \sum_{i} K_i \cdot V_i + I$$

A statistical model has been developed to predict the selling price of vehicles. Based on the results of the analysis of the dataset, a linear model with modification—*Ridge Regression* (α =0.01)—was chosen.

This model calculates the expected selling price—P—based on the 8 factors shown in the table. Engine Volume, Age (square root), and Mileage are quantitative factors, which means that they have numerical values V_i that affect (with respective K_i ratios) the predicted sales price. Physical Availability – Seized/Traced, Segment (Budget, Middle, Upper middle, Luxury), Brand Region (USA, Europe, Asia (South Korea and Japan), Other countries (all other countries not included in the regions above), Physical condition – Unsatisfactory, Type of transport – Cars are qualitative factors and take "1" for "Yes" or "0" for "No", in which case and based on K_i ratio, they affect or do not affect the estimated price of the asset.

Price Prediction Model¹ – Fixed Assets (FA)

$P = Quoted \ price \cdot Discount$

P – prognosed income for the FA pool,

Quoted price – the maximum value between the Book Value and the Estimated Value of the FA pool (UAH),

Discount – the value of the discount (statistically calculated) depending on the type of fixed assets.

Fixed Assets Type	Discount
Banking equipment	37%
Furniture	54%
Electronics	50%
Other	53%

- Generally, fixed assets are sold in pools. In most cases, fixed assets are sold in pools or in combination with other assets (for example, real estate, vehicles). The developed model covers only pools for the sale of fixed assets.
- Among asset characteristics specified in the passports, one has the greatest impact on the cost of fixed assets—the fixed asset type.
- The limited number of asset characteristics in passports allows building the simplest model, which is based on sample metrics and takes into account just one factor, i.e. the fixe asset type.

Price Prediction Model¹ – Loans to Individuals (Secured²) – Factors

The study identified four factors that significantly impact the loan sale price:

- Interest debt in total debt;
- Outstanding principal amount to the loan amount;
- Collateral coverage ratio (CCR)³;
- Loan overdue in days.

The graphs demonstrate how Income, % depends on the identified factors.

Average Income against CCR

¹ Number of observations for the model: 4533

² As part of this study, a Loans-to-Individuals model was built for secured loans only since the dataset contained no data on unsecured loans to individuals.

³ If CCR is less than 1, it indicates that the collateral amount is insufficient to cover the loan amount debt.

Price Prediction Model – Loans to Individuals (Secured¹) – Model

$P = Total \ debt \ balance \cdot Overdue \ adjustment \ multiplier \cdot Prognosed \ share \ of \ income$

P- prognosed loan income,

Total debt balance – the amount of total loan debt,

Overdue adjustment multiplier – an adjustment multiplier, which is calculated statistically based on the loan overdue period²,

Prognosed share of income – prognosed percentage of income determined statistically based on Interest debt share, outstanding principal amount, and CCR².

¹ As part of this study, a Loans-to-Individuals model was built for secured loans only since the dataset contained no data on unsecured loans to individuals. ² Tables with values are provided in the Study document.

Price Prediction Model¹ – Loans to Legal Entities

$P = Total \ debt \ balance \cdot Portfolio \ adjustment \ multiplier \cdot Forecasted \ share \ of \ income$

Due to the sample size of loans to legal entities, the use of statistical methods for the analysis is limited as only one main factor that impacts the cost—the size of the loan—may be identified.

Other characteristics of the loan, such as loan currency, overdue period, information about the legal entity, legal factors, potentially have a significant impact on the final sale price. All of them can be taken into account using the *Portfolio adjustment multiplier*. P – prognosed loan income,

Total debt balance – the amount of total loan debt,

Portfolio adjustment multiplier – a loan adjustment coefficient determined by the expert method based on the loan currency, overdue period, existing legal factors²,

Forecasted share of income -

the predicted share of income determined statistically (separately for secured and unsecured loans) based on the size of the loan².

² Tables with values are provided in the Study document.

Price Prediction Model – Pools of Loans to Individuals (Secured)

The model for estimating the price of pools consisting of secured loans to individuals is based on the model for calculating standalone loans to individuals.

To determine the sale price of such pool, we must calculate the cost of each loan in the pool using the appropriate model and sum them up.

Price Prediction Model – Pools of Loans to Individuals (Unsecured)

$P = Total \ debt \ balance \cdot Portfolio \ adjustment \ multiplier \cdot$ Forecasted share of income

P – prognosed income of the loan pool,

Total debt balance – the amount of total debt on the pool of loans,

Portfolio adjustment multiplier – an adjustment coefficient for the pool, statistically determined based on the size of the pool and the average overdue period,

Forecasted share of income – the predicted share of income from the pool, determined statistically based on the average loan debts and the overdue period.

Portfolio ad	justment	Average overdue, in days]	For
multipl	ier	≤ 1095	> 1095		
Pool size,	≤ 200	1	1	1	Avera
in UAH m	> 200	1	0.69	1	in UA

Forecasted share of income		Average overdue period, in days			
		≤ 1095	> 1095		
Average debt,	≤ 25 000	1.98%	1.33%		
in UAH	> 25 000	1.04%	0.76%		

Model Factors

Pool size, in UAH

Average loan debt

Average overdue period

Price Prediction Model – Modeling Challenges

The study has identified issues that made it impossible to build models for the following types of assets.

January 2024

Current study was made possible by sponsorship of the World Bank Group and the Swedish Government and conducted by one of the Big 4 companies.

Described models and analysis are build on historical data over the period from 2017 to February 2022 placed on the Prozorro.sales platform. All developed methodologies are based on the data on asset sales before the start of the war. As the economic and political situation of the market changes in time, the predictive ability of models may be impaired when applied to data during and after the war. The proposed models are methodological in nature. Models must be periodically reviewed (validated).